# A New Furostanol Glycoside from Polygonatum odoratum

## Hai Lin QIN\*, Zhi Hong LI, Peng WANG

#### Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050

**Abstract:** A new furostanol component glycosylated only at C-26 was isolated from the rhizomes of *Polygonatum odoratum* (Mill.) Druce, and its structure was characterized as 22-hydroxy-25(R and S) furost-5-en-12-on-3 $\beta$ , 22, 26-triol 26-O- $\beta$ -D-glucopyranoside on the basis of spectroscopic techniques and chemical methods.

Keywords: Polygonatum odoratum (Mill.) Druce, furostanol monoglycoside.

The crude glycoside fraction obtained from the ethanolic extract of the rhizomes of *Polygonatum odoratum* (Mill.) Druce was chromatographed on silica gel to afford a new steroidal ingredient **1**.

Compound **1**, colorless needles, mp 142-143°C,  $[\alpha]_D^{17}$ -0.024 (*c* 0.11, MeOH). The IR spectrum showed a strong broadened absorption band at 3425 cm<sup>-1</sup> for hydroxy groups and a sharpened absorption band at 1707 cm<sup>-1</sup> for carbonyl group. Its molecular formula was indicated to be  $C_{33}H_{52}O_{10}$  by the data at *m*/z 647[M+K]<sup>+</sup>, 631[M+Na]<sup>+</sup>, 591[M-H<sub>2</sub>O+H]<sup>+</sup> from positive FAB-MS and at 631.3487[M+Na]<sup>+</sup> (calcd. for  $C_{33}H_{52}O_{10}Na$  631.3458), 591.3536[M-H<sub>2</sub>O+H]<sup>+</sup> (calcd. for  $C_{33}H_{51}O_9$  591.3534 ) from high resolution FAB-MS, and it was assumed to be a furostanol saponin on the basis of above data<sup>1</sup>. The signals at  $\delta_H 4.17(d, 1H, J=8.0 Hz)$  and  $\delta_C 104.6 (d)$  in the <sup>1</sup>H, <sup>13</sup>C and DEPT NMR spectra of compound **1** indicated that **1** possessed a monoglycosidic structure with a  $\beta$ - sugar unit. The signals in the <sup>13</sup>C NMR spectrum due to its aglycone moiety (see **Table 1**) indicated that it is 22-hydroxy-furost-5-en-12-on-3 $\beta$ , 22, 26-triol<sup>2</sup>,

Figure 1 The structure and key HMBC correlation of 1



<sup>\*</sup> E-mail:qinhailin@imm.ac.cn

## Hai Lin QIN et al.

| С  | δ                 | DEPT            | С  | δ                 | DEPT            | С  | δ            | DEPT            |
|----|-------------------|-----------------|----|-------------------|-----------------|----|--------------|-----------------|
| 1  | 38.1 <sup>a</sup> | $CH_2$          | 12 | 215.8             | С               | 23 | 32.06, 32.12 | CH <sub>2</sub> |
| 2  | 32.1 <sup>b</sup> | $CH_2$          | 13 | 56.4              | С               | 24 | 28.87, 28.93 | CH <sub>2</sub> |
| 3  | 72.1              | СН              | 14 | 57.3              | CH              | 25 | 35.0, 35.1   | СН              |
| 4  | 42.8              | $CH_2$          | 15 | 32.6 <sup>b</sup> | $CH_2$          | 26 | 75.8, 76.0   | $CH_2$          |
| 5  | 142.2             | С               | 16 | 80.9              | СН              | 27 | 17.2, 17.4   | CH <sub>3</sub> |
| 6  | 122.1             | CH              | 17 | 56.0, 56.1        | CH              | 1′ | 104.6        | СН              |
| 7  | 31.3 <sup>b</sup> | $CH_2$          | 18 | 16.4              | CH <sub>3</sub> | 2' | 75.2         | СН              |
| 8  | 32.1              | CH              | 19 | 19.3              | CH <sub>3</sub> | 3′ | 78.1         | СН              |
| 9  | 53.9              | CH              | 20 | 41.6, 41.8        | СН              | 4′ | 71.7         | СН              |
| 10 | 38.4              | С               | 21 | 14.7, 14.8        | CH <sub>3</sub> | 5′ | 78.0         | СН              |
| 11 | 38.3 <sup>a</sup> | $\mathrm{CH}_2$ | 22 | 114.0             | С               | 6′ | 62.8         | $CH_2$          |

**Table 1** ${}^{13}$ C NMR data for **1** (125MHz, in CD<sub>3</sub>OD)

<sup>a,b</sup>Signals may be interchanged respectively.

while the signals due to its sugar moiety were identical with those of C-26 linked  $glucose^2$ . The TLC of the acidic hydrolysate of **1** confirmed the liberating of glucose from this compound. The glycosylation of **1** was located at C-26 on the basis of the carbon signals at  $\delta$  76.0 (C-26) in the <sup>13</sup>C NMR spectrum, and this was confirmed by the HMBC experiments (see Figure 1). In addition, the <sup>1</sup>H NMR spectrum of 1 also showed the characteristic signals at  $\delta$  1.01(d, 3H, J=6.5Hz, CH<sub>3</sub>-21), 1.08(s, 3H, CH<sub>3</sub>-18), 1.09 (s, 3H, CH<sub>3</sub>-19), 2.58 (m, 1H, H-14), 3.71 (m, 1H, H-26a), 4.26 (ddd, 1H, J=5.5, 7.0, 8.5Hz, H-16) and 5.35 (m, 1H, H-6). Besides, two low-intensity doublet signals ascribed to CH<sub>3</sub>-27 at  $\delta$  0.89 and 0.90 (total 3H, both J=6.6Hz) were detected, and this fact, along with the pairs of the signals for C-17,20,21,23,24,25,26 and 27 in the  $^{13}$ C NMR spectrum, clearly revealed that the 25 (R) and 25 (S) epimers of 1 were existed. The signal at higher field was corresponding to the 25 (R) configuration and the lower one to the 25  $(S)^3$ . Moreover, the 25 (R) epimer was somewhat more than the 25 (S)from their <sup>1</sup>H NMR signal intensities. All of the signals in the <sup>1</sup>H and <sup>13</sup>C NMR spectra were unambiguously assigned by <sup>1</sup>H-<sup>1</sup>H COSY, HMQC and HMBC experiments. Consequently, the structure of 1 was assigned as 22-hydroxy-25 (R and S)-furost-5-en-12 -on-3β, 22, 26-triol 26-O-β-D-glucopyranoside.

To the best of our knowledge, and according to the literature<sup>4</sup>, all of the furostanol glycosides obtained by now were simultaneously glycosylated with two sugar chains, one of them must be at C-26, the other at C-3. So this is the first report of the furostanol monoglycoside glycosylated only at C-26.

## Acknowledgment

Project 02-03zp09 was supported by the Science Foundation of State Administration of Traditional Chinese Medicine, P.R. China

### References

- 1. F. Liang, L. J. Li, Z. Abliz, et al., Rapid. Commun. Mass Spectrom, 2002, 16, 1168.
- 2. X. C. Li, C. R. Yang, M. Ichikawa, et al., Phytochemistry, 1992, 31(10), 3559.
- 3. M. Yoshikawa, T. Murakami, H. Komatsu, et al., Chem. Pharm. Bull., 1997, 45(1), 81.
- 4. X. S. Yao, Chemistry on Natural Medicines, People's Health Press, Beijing, 2000, p 407.

Received 23 January, 2003